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ABSTRACT

Motivation: The continuing exponential accumulation of full genome
data, including full diploid human genomes, creates new challenges
not only for understanding genomic structure, function and evolution,
but also for the storage, navigation and privacy of genomic data.
Here, we develop data structures and algorithms for the efficient
storage of genomic and other sequence data that may also facilitate
querying and protecting the data.
Results: The general idea is to encode only the differences between
a genome sequence and a reference sequence, using absolute
or relative coordinates for the location of the differences. These
locations and the corresponding differential variants can be encoded
into binary strings using various entropy coding methods, from fixed
codes such as Golomb and Elias codes, to variables codes, such as
Huffman codes. We demonstrate the approach and various tradeoffs
using highly variables human mitochondrial genome sequences as
a testbed. With only a partial level of optimization, 3615 genome
sequences occupying 56 MB in GenBank are compressed down
to only 167 KB, achieving a 345-fold compression rate, using the
revised Cambridge Reference Sequence as the reference sequence.
Using the consensus sequence as the reference sequence, the data
can be stored using only 133 KB, corresponding to a 433-fold level
of compression, roughly a 23% improvement. Extensions to nuclear
genomes and high-throughput sequencing data are discussed.
Availability: Data are publicly available from GenBank, the HapMap
web site, and the MITOMAP database. Supplementary materials
with additional results, statistics, and software implementations
are available from http://mammag.web.uci.edu/bin/view/Mitowiki/
ProjectDNACompression.
Contact: pfbaldi@ics.uci.edu

1 INTRODUCTION
As high-throughput genome sequencing technologies continue to
improve, genome sequence data continue to accumulate at an
exponential pace. Not only do we already have the genome sequence
of thousands of viruses and bacteria and dozens of multicellular
organisms from plants to humans, but we are rapidly approaching the
stage where sequencing individual diploid human genomes will be
economically affordable. The first diploid human genome sequences
were recently produced (Levy et al., 2007; Wang et al., 2008;
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Wheeler et al., 2008) and a project to sequence 1000 human genomes
in the next few years is under way (Kaiser, 2008). And so is the race
for the capability to sequence an individual human genome for less
than $1000 within a few years (Service, 2006). Millions of human
genome sequences could be generated within a decade or two.

In addition to the obvious challenges to understand the structure,
function and evolution of genomes, modern high-throughput
sequencing (HTS) methods also raise questions about how to
efficiently represent, store, transmit, query and protect the privacy
of sequence information. These questions are further reinforced if
one takes into account also progress in synthetic biology and our
ability to bioengineer new sequences.

Currently, publicly available genomes are typically stored as flat
text files in GenBank, but this approach is unlikely to scale up in
many ways. The storage of the diploid genomes of all currently
living humans using this simple approach would take ‘GenBank’,
without counting headers or any additional annotations, on the order
of 36×1018 bytes, or 36M Terabytes, an amount difficult to store
or download over the Internet, even using standard compression
technologies (e.g. gzip). And even with the progress that can be
expected with Moore’s law for storage and networking in the coming
years, it is likely that security and privacy issues will require
additional layers of protection around genomic data.

Here, we develop data structures and algorithms to begin
addressing these problems. These data structures allow the
compression of genome and other sequences while facilitating
certain classes of sequence queries by bypassing classical sequence
alignments and dynamic programming algorithms. The approach
is demonstrated primarily using a benchmark dataset comprising
a few thousand individual mitochondrial genomes sequences.
Human mitochondrial sequences provide an excellent testbed for
developing and testing efficient data structures and algorithms
because, unlike nuclear genome sequences, many thousands of fully
sequenced mitochondrial genomes are already available, from a
diverse population of individuals. In addition, mitochondrial genome
sequences pose unique challenges due to their greater variability, as
compared with single nucleotide polymorphism (SNP) data.

2 GENERAL APPROACH
In the case of multiple genomes from the same species, associated
with ‘resequencing’ technologies, the flat text file approach is clearly
wasteful since for the most part the sequences are identical. Thus a
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simple approach is to store a reference sequence, and then for each
other sequence, encode only the differences (or ‘deltas’) with respect
to the original sequence. More precisely, consider first the sequences
AACGACTAGTAATTTG and CACGTCTAGTAATGTG which are
identical, except for a substitution in position 1 (A→C), 5 (A→T)
and 14 (T→G). Each SNP can be encoded by a pair (i,X), where i
is an integer encoding the position and X represents the value of the
substitution relative to the reference. Thus given the first sequence as
a reference, the second one can be encoded by the string ‘1C5T14G’,
concatenating the coordinates of the locations at which the variations
occur and the SNP values at these locations. Note that with this data
representation, the questions ‘Is this sequence different from the
reference sequence at position i? And if so how?’ are easy to answer.
Thus, the same data structure that facilitates compact representation,
facilitates also efficient information retrieval.

Other events such as deletions and insertions can easily be
accommodated in the same general scheme. For a deletion, imagine
using two integers (i,l) where the first integer denotes the position
where the deletion occurs, and the second integer represents the
length of the deletion. Likewise, for an insertion of length l, one
can use the encoding i,X1 ...Xl to denote the insertion of X1 ...Xl at
position i with respect to the reference sequence.

Although the basic idea is easy to understand, and not new, a
precise implementation requires addressing a number of important
technical issues. A first observation is that one can use local
relative addresses, i.e. intervals, rather than absolute addresses.
Using intervals, the above example ‘1C5T14G’ becomes ‘0C4T9G’.
With intervals the dynamic range of the integers to be encoded may
be considerably smaller than with absolute addresses. The relatively
modest price to pay is that intervals must be added to recover
absolute coordinates.

A second observation is that if the positions at which variations
occur in the population are fixed and form a relatively small subset
of all possible positions, then additional savings may result by
focusing only on those positions. If in the same schematic example
as above, one knew that the population substitutions can occur
only at positions 1, 5 and 14, then one could, for instance, encode
‘1C5T14G’ simply by ‘CTG’, at the cost of keeping an additional
table storing the coordinates where the variants occur, and using the
letter in the reference sequences at positions where the reference
sequence and the sequence under consideration are identical. This
approach could be suitable, for instance, for the SNP HapMap data
(The International HapMap Consortium, 2003, 2007), but may not be
suitable in other situations, where either the location of all possible
variations occurring in the population under consideration is not
known in advance, or the number of such locations is very large
across the population, but not very large in a typical sequence.
This is the case, for instance, of mitochondrial DNA which is
characterized by much higher mutation rates than nuclear DNA.
Thus, different situations may lead to different variations of the basic
idea.

An additional technical consideration is the choice of the reference
sequence. In particular, the reference sequence does not need to be
an actual genome but can, for instance, correspond to a consensus
genome. While the resequencing case is of primary interest here
due to the medical implication associated with resequencing human
genomes, the same general ideas can be applied also to the case of
de novo sequencing by using, for instance, the genome of the closest
available species as the reference genome.

However, no matter what the detailed scenario is, all applications
of the basic ideas hinge on a fundamental technical problem: how
to encode integers, representing for instance absolute or relative
genomic addresses or read lengths, into binary strings. It is essential
to understand that the naive idea of converting integers to their binary
value, that is, converting a ‘5’ to ‘101’ does not work at all since
with this encoding one does not know where an integer ends and the
next one begins. There are no spaces, tabs or commas available to
separate consecutive integers in the ultimate binary format of any
computer where only the symbols 0 and 1 are available. Thus, the
encoding itself must somehow contain the information necessary
to uniquely determine the beginning and end of each information
item. In addition, the plain conversion of integers to binary does not
take into account any entropy considerations. Similarly, a general
purpose compression scheme for text data, such as Lempel-Ziv
(gzip), is likely to be far from optimal for genome and HTS data.
In short, we are interested in binary encoding schemes for sequences
of integers that can be parsed automatically and that, consistently
with information theory, are entropy efficient, in the sense that fewer
bits are used to encode more frequent events. The goal here is not to
prescribe a single strategy to achieve this end, but rather to present
a family of related coding strategies and some of the tradeoffs that
would have to be optimized in a practical application, and illustrate
the approach using highly variable mitochondrial DNA.

3 SPECIFIC ENCODING STRATEGIES
To begin with, we illustrate these issues here by considering
how the integer positions i are ultimately encoded into a binary
string. From Shannon’s entropy coding theory (Cover and Thomas,
1991; McEliece, 1977), optimal encoding of these integers from
a compression standpoint depends on their distribution in order to
assign shorter binary codes to more probable symbols (integers). For
simplicity, we distinguish two broad classes of codes: fixed codes,
such as Golomb codes (Golomb, 1965) and Elias codes (Elias, 1975),
and variable codes, such as Huffman codes (Huffman, 1952). In a
fixed code, the integer i is always encoded in the same way, whereas
in a variable code the encoding changes.

3.1 Fixed codes: Golomb and Golomb–Rice codes
Both Golomb codes and Elias codes encode an integer j by
concatenating two bit strings: a preamble p(j), that encodes j’s
scale, and a mantissa. Golomb codes were specifically developed to
encode stationary coin flips with p �= 0.5. Thus, they are known to be
optimal and asymptotically approach the Shannon limit if the data
are generated by random coin flips or, equivalently, if the distribution
over the integers is geometric, although they can be used for any
other distribution. The more skewed the probability p is (towards
0 or 1) the greater the level of compression that can be achieved.

Golomb codes have one integer parameter m. Given m, any
positive integer j can be written using its quotient and remainder
modulo m as j=�j/m�+(j mod m). To encode j, the Golomb code
with parameter m (Table 1) encodes the quotient and remainder by
using:

• �j/m� 1-bits for the quotient;

• followed by a 0, as a delimiter (unary encoding of �j/m�);
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Table 1. Golomb encoding of the integers j=0 to 8, for different values of
the parameter m

j m=2 m=3 m=4 m=5 m=6

0 00 00 000 000 000
1 01 010 001 001 001
2 100 011 010 010 0100
3 101 100 011 0110 0101
4 1100 1010 1000 0111 0110
5 1101 1011 1001 1000 0111
6 11100 1100 1010 1001 1000
7 11101 11010 1011 1010 1001
8 111100 11011 11000 10110 10100

• followed by the phased-in binary code for j mod m for the
remainder (described below).

The encoding of integers 0,...,m−1 normally requires B=�logm�
bits. If m is not a power of two, then one can sometimes use B−1
bits. More specifically, in the ‘phased-in’ approach:

• if i<2B −m, then encode i in binary, using (B−1) bits;

• if i≥2B −m, then encode i by i+2B −m in binary, using B bits.

For instance, for m=5, i=2 is encoded as ‘10’ using 2 (=B−1)
bits, and i=4 is encode as ‘111’ using 3 (=B) bits (Table 1). Thus
the encoding of j requires in total �j/m�+1+�logm� or �j/m�+
1+�logm� bits (Table 1) and the codeword for the integer j+m has
one more bit than the codeword for the integer j. Unless otherwise
specified, all logarithms are taken to base 2. We use also ‘[logm]’ to
denote ‘�logm� or �logm�’.

The entropy of the geometric distribution of the coin flip run-
lengths is given by (using q=1−p):

H(geometric)=−
∞∑

j=0

qjplog(qjp) (1)

and provides the optimal Shannon coding lower bound on the
expected encoding length l per integer

E(l)≈
∞∑

j=0

qjp
(�j/m�+1+[logm]) (2)

under the coin flip model. Thus, the Golomb code approaches the
Shannon limit when qm =0.5. In particular, this ensures that for each
integer j

−logP(j)= log(qjp)≈�j/m�+1+[logm] (3)

where P(j) is the probability associated with the integer j.
Finally, Golomb–Rice codes are a particularly convenient sub-

family of Golomb codes, when m=2k (Table 2). To encode j, we
concatenate �j/2k� 1-bits, one 0-bit and the k least significant bits
of j. The length of the encoding of j is thus �j/2k�+k+1. The
decoding of Golomb–Rice codes is particularly simple, the position
of the 0-bit gives the value of the prefix to be followed by the next
k bits.

Table 2. Golomb–Rice encoding of integers j=0−33 with k =2 (m=4)
and k =3 (m=8)

Number Encoding (k =2) Number Encoding (k =3)

0–3 0xx 0–7 0xxx
4–7 10xx 8–15 10xxx
8–11 110xx 16–31 110xxx
33 11111111001 33 11110001

Integer j is encoded by concatenating �j/2k� 1-bits, one 0-bit and the k least significant
bits of j.

Table 3. Elias Gamma encoding

Number Encoding

1 1
2–3 01x
4–7 001xx
8–15 0001xxx
16–31 00001xxxx

Each integer j is encoded by concatenating �logj� 0’s with the binary value of j.

3.2 Elias codes
In the Elias Gamma coding scheme, the preamble p(m) is a string of
zeroes of length �logj�, and the mantissa m(j) is the binary encoding
of j. More precisely, to encode the scale and value of j:

• write �logj� 0-bits;

• followed by the binary value of j beginning with its most
significant 1-bit.

The length of the encoding of j is 2�logj�+1 (Table 3). The decoding
is obvious: first read n 0-bits until the first 1-bit is encountered, then
read n more bits to get the binary representation of j.

Applying the relationship

−logP(j)≈2�logj�+1 (4)

to the integer probabilities, shows that Elias Gamma encoding
asymptotically approaches the Shannon limit for P(j)≈Cj−2. This is
a power–law relationship with exponent −2 and C is a normalizing
constant. Note that for both Golomb [Equation (3)] and Elias
Gamma codes [Equation (4)], several different consecutive integers
can be encoded into a bit vector with the same length, hence the
relationships −logP(j)≈ length(j) is only approximate with respect
to geometric or power–law distributions over the integers. To be
more precise, the optimal distribution associated with the Elias
Gamma code can be separated into the product of a probability
distribution over the length l given by P(l)=2−l and a uniform
distribution over the integers having an encoding of length l given
by P(j|l)=2−l+1.

More recently, new families of efficient fixed codes for integers
have been developed (Baldi et al., 2007; Hirschberg and Baldi, 2008;
Moffat and Anh, 2006; Moffat and Stuiver, 2000), for instance, in
the case of increasing or quasi increasing sequences of integers, by
encoding only the deltas of the preambles. For sequence data, the
absolute addresses are increasing, and the relative addresses could
be made quasi-increasing if one were to apply a fixed permutation
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to all the sequences to be stored, at the cost of storing and using this
permutation (Baldi et al., 2007).

3.3 Decoding and byte arithmetic
While the degree of compression achieved is an important criteria,
the complexity and speed of decoding is also important in all
the applications to be considered. For all the encoding algorithms
described above, we have also described corresponding simple
and fast decoding algorithms. Direct implementations of the
decoding algorithms process the compressed representations bit-by-
bit; however, it is possible to implement even faster decoders, which
decode the compressed data byte-by-byte. These faster decoders
work by looking up information from precomputed tables. These
tables are indexed by: (i) all possible bytes B (ranging from 0 to 255);
and (ii) a bit-index i (ranging from 0 to 7) which marks the position
of the decoder within the byte. These tables may store quantities such
as the binary value of byte B starting from bit i, the number of bits
turned on in byte B starting from bit i and the unary value of byte B
starting from bit i. The exact quantities stored depend on the details
of a particular decoder implementation. In practice, byte arithmetic
considerably increases decoding speed, sometimes approaching as
much as an 8-fold improvement over the corresponding bit-by-bit
implementation. The exact value of the speedup depends on several
factors including the characteristic of the data, the exact compression
scheme and the hardware used.

3.4 Variable codes
In genomic applications, in general the integers may not have a
well-defined distribution, in which case it is always possible to
use a general entropy encoding scheme, such as Huffman coding
(Cover and Thomas, 1991; Huffman, 1952; McEliece, 1977), which
essentially builds a prefix code by using a binary hierarchical
clustering algorithm starting from the events (integers) with the
lowest probability. While Huffman coding achieves compression
close to the entropy limit, the price to pay over fixed coding
schemes such as Golomb and Elias Gamma, or the more recent
codes mentioned above, is the storage of the Huffman table which
can be quite large in some applications. However, this is a fixed cost
with respect to the database size, and therefore whether this cost is
acceptable or not depends on the specific application. Small gains in
compression over Huffman coding may be obtained using arithmetic
coding (Rissanen and Langdonr, 1979; Witten et al., 1987), but at a
non-trivial price in the complexity of computations.

4 RESULTS

4.1 Data extraction
To demonstrate the general approach, 3615 human mitochondrial
sequences were downloaded from a recent version of GenBank.
We focused on the sequences alone, ignoring any header and any
other exogenous information. We first use the revised Cambridge
Reference Sequence (rCRS) sequence (GenBank accession number:
AC_000021) as the reference sequence (Brandon et al., 2005;
Ruiz-Pesini et al., 2007). The reference sequence is 16 568 bp
long. Among the other sequences, 2671 correspond to complete
genomes, while the remaining 944 correspond only to the coding
region sequence, which is about ∼1100 bp shorter than the full
genome sequence, and extends from position 577 to 16 023 of the

reference sequence. Eighty sequences contained ambiguous symbols
which, for simplicity, were replaced by the corresponding value in
the reference sequence. This replacement is without much loss of
generality since ambiguous symbols could easily be accommodated
into the coding schemes, for instance as additional variation types.

4.2 General statistics
There are 4577 positions along the reference sequence where at least
one of the other sequence deviates from the reference. In aggregate,
there are 122 131 bp that deviate from the reference sequence.
Besides substitutions, the total number of insertion and deletion
events across all the sequences is 7119, the most frequent one being
1 bp insertions (4615 occurrences), followed by 2 bp deletions (901).
Some well-known variants, such as the ‘Asian-specific 9 bp deletion’
(Harihara et al., 1992; Thomas et al., 1998), also occur frequently
(255 occurrences). In total, there are 43 different kinds of variation
events (Tables 6 and 7). On average, a given sequence deviates from
the reference sequence in 33.8 bp with a SD of 13.43 bp. The average
number of substitutions (transition/transversions) per sequence is
30.69 bp. The average number of insertions per sequence is 1.69 bp
and the average number of deletions is 1.37 bp.

The distribution of the raw intervals using the rCRS as the
reference sequence is represented in Figure 1 displaying the
logarithm of the counts versus the logarithm of the rank (in
decreasing order of frequency). Observed intervals vary from 0
to 14 997 bp, the most frequent one being an interval of 72 (2579
occurrences) (see interpretation in next section), followed by 687
(2418 occurrences), and followed by 5 (2130 occurrences). Overall
this distribution is not strongly structured.

4.3 Changing the Reference Sequence
There are no particular reasons, beyond standardization and
tradition, for using rCRS as the reference sequence. Furthermore,
purely from a compression standpoint, the rCRS may not be optimal
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Fig. 1. Distribution of intervals between variations using a log rank-log
frequency plot. x-axis represents the logarithm of the rank associated
with decreasing interval frequencies. y-axis represents the logarithm of the
corresponding counts.
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due to biases in data. To illustrate this point, we computed the
haplotype distribution of the data using the simplified haplotype
classification described in Figure 2 (see also, Brandon et al., 2009;
Mishmar et al., 2003). We find the following skewed distribution:
11.2% African (405 sequences), 26.3% Asian (950 sequences) and
62.5% EurAsian (2260 sequences). In addition, it is well known that
the original Cambridge Reference sequence contains a number of
errors and has been revised over the years (Anderson et al., 1981;
Andrews et al., 1999). (The revisions to the original sequence are
described at: http://www.mitomap.org/mitoseq.html.) This alone, for
instance, explains why the interval 72 is so frequent with respect to
the rCRS: the rCRS sequence has a G in the corresponding position,
which is a very rare variant, most likely an error.

Thus, it is clear that other reference sequences could be used
to improve compression rates and minimize the total number of
variants. Furthermore, the reference sequence does not need to be
a sequence from an actual individual, but could be designed using
purely statistical considerations. Note that the design of the reference
sequence impacts not only the variants to be recorded, but also
the intervals, and therefore it must also take into consideration any
constraints a particular implementation may place on the intervals
and their encodings. A reasonable choice adopted here to try to
further improve the compression rate, is to use the consensus
sequence, derived by computing the consensus at each position, as
the reference sequence.

Using the consensus sequence, observed intervals vary from 0
to 11 717 bp, the most frequent one being an interval of 5 (2104
occurrences), followed by 1 (1251 occurrences) and followed by
259 (895 occurrences).

Fig. 2. Simplified haplotype classification used in Brandon et al. (2009).

4.4 Encoding and compression
We explored and compared different encoding schemes using both
fixed and variable codes. The main sample of results is given in
Tables 4 and 5 giving the average number of bits required to encode
an interval or a variant, using Huffman, Golomb or Elias Gamma
codes, with the rCRS or the consensus sequence, as well as the total
number of bits required to encode the entire data. The Huffman
coding tables for the events are given in Tables 6 and 7 for the rCRS
and consensus sequence, respectively.

As can be seen in Table 5, Huffman coding achieves slightly better
compression rates than Golomb or Elias Gamma coding, with a
table storage cost that may be manageable in this case. The raw
data takes 56 MB (58 817 584 bytes) of space. By concatenating the
Huffman codes for the intervals and the variants (H+H), the encoded
data requires only 167 KB of space, corresponding to a 345-fold
level of compression. Using, for instance, Golomb codes for both
the intervals and the variants (G+G) requires instead 195 KB. The
choice of the reference sequence has a noticeable effect. Although
the average number of bits required to encode an interval or a
variant is slightly higher for the consensus sequence (Table 4), this
is compensated by a considerable decrease in the total number of
variants to be encoded. This is true here even with a consensus
sequence that differs from the rCRS sequence by only 11 nt. As
shown in Table 5, the same encoding method based on using
two Huffman codes (H+H), applied with the consensus sequence,
requires only 133 KB to store the entire data. This corresponds to a
433-fold level of compression, roughly a 23% improvement.

5 DISCUSSION
A simple but general data structure and data encoding approach
has been developed for the efficient storage of genomic data.
The approach specifically leverages homology between sequences
and is different from general compression algorithms for text,
or compression algorithms for single genome data (Behzadi and

Table 5. Total file size comparison using the rRCS and the consensus
sequence, with Huffman encoding for both intervals and variants (H+H),
or Golomb encoding for both interval and variants (G+G), or Elias Gamma
encoding for both interval and variants (E+E)

H+H G+G E+E

Cambridge 167 (345) 195 (295) 226 (254)
Consensus 133 (433) 159 (361) 183 (314)

Numbers are given in Kilobytes (1024 × 8 bits). In comparison, the raw data takes
56 MB (57439.05 KB). Compression factor are given in parenthesis.

Table 4. Comparison of the average bit cost of encoding intervals and events for Huffman, Golomb and Elias Gamma encoding schemes using the rCRS and
the consensus sequence

Intervals Variants

Huffman Golomb Elias Gamma Huffman Golomb Elias Gamma

Cambridge 9.21 11.10 12.93 2.66 2.44 2.77
Consensus 9.75 12.03 13.86 2.44 2.59 2.97
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Table 6. Huffman encoding for the event types using the rCRS

Variant Count Binary code

G 42839 11
C 24753 01
T 22345 00
A 21003 101
InsC 3980 1001
Del2bp 901 100011
Del1bp 757 100001
InsCC 360 1000100
InsT 313 1000001
Del9bp 255 1000000
InsA 222 10001011
InsCCC 34 1000101000
InsCCCC 30 10001010110
InsG 29 10001010100
InsCCCCC 16 100010101110
InsACA 15 100010101011
InsCCCCCC 12 100010100110
InsCCCCCCC 8 1000101010101
InsAC 6 1000101001011
InsCCT 5 1000101001010
Del6bp 4 10001010111100
Del8bp 4 10001010111101
InsCCCCCTCTA 3 10001010011111
Del3bp 3 10001010101001
InsGC 3 10001010011101
InsCCCCCCCC 3 10001010101000
InsTT 3 10001010011110
Del4bp 3 10001010011100
InsACAC 2 100010101111100
InsACACA 1 100010100100000
InsCCCCCCCCC 1 100010100100111
InsTA 1 1000101011111110
InsGA 1 1000101011111101
InsGG 1 1000101011111100
InsCA 1 1000101011111011
InsAG 1 1000101011111010
InsGATCACAG 1 100010100100011
Del10bp 1 100010100100010
InsTCTCTGTTCTTTCAT 1 100010100100001
InsACACAC 1 100010100100101
InsAGAA 1 100010100100100
InsCACA 1 1000101011111111
Del5bp 1 100010100100110

Deletions (Del) are followed by their length. Insertions (Ins) by their content.

Fessant, 2005; Chen et al., 2002; Williams and Zobel, 1997). The
approach has been demonstrated on the mitochondrial genomes,
where it leads to 2–3 orders of magnitude improvement in data
storage. From these compact representations, full sequences can
be recovered rapidly using the reference sequence. Furthermore,
queries regarding the existence and nature of variants at particular
coordinate positions, such as those arising in a variety of applications
from medicine to forensics, can be answered efficiently. Additional
encryption methods may be applied to these representations to
protect the security of both the genomic data and the queries.

The approach has been used for lossless compression, however it
could be used also in lossy compression, for instance, by ignoring
variants that are not medically relevant. The approach is also

Table 7. Huffman encoding for the event types using the consensus sequence

Variant Count Binary code

C 26164 11
A 19576 01
G 18002 00
T 16528 101
InsC 3980 1001
Del2bp 901 100011
Del1bp 757 100001
InsCC 360 1000100
InsT 313 1000001
Del9bp 255 1000000
InsA 222 10001011
InsCCC 34 1000101000
InsCCCC 30 10001010110
InsG 29 10001010100
InsCCCCC 16 100010101110
InsACA 15 100010101011
InsCCCCCC 12 100010100110
InsCCCCCCC 8 1000101010101
InsAC 6 1000101001011
InsCCT 5 1000101001010
Del6bp 4 10001010111100
Del8bp 4 10001010111101
InsCCCCCTCTA 3 10001010011111
Del3bp 3 10001010101001
InsGC 3 10001010011101
InsCCCCCCCC 3 10001010101000
InsTT 3 10001010011110
Del4bp 3 10001010011100
InsACAC 2 100010101111100
InsACACA 1 100010100100000
InsCCCCCCCCC 1 100010100100111
InsTA 1 1000101011111110
InsGA 1 1000101011111101
InsGG 1 1000101011111100
InsCA 1 1000101011111011
InsAG 1 1000101011111010
InsGATCACAG 1 100010100100011
Del10bp 1 100010100100010
InsTCTCTGTTCTTTCAT 1 100010100100001
InsACACAC 1 100010100100101
InsAGAA 1 100010100100100
InsCACA 1 1000101011111111
Del5bp 1 100010100100110

Deletions (Del) are followed by their length. Insertions (Ins) by their content.

applicable to other kinds of sequences, such as RNA or protein
sequences. While for demonstration purposes we have used a single
reference sequence, it is clear that one could cluster the data and use
different reference sequences for different subgroups. In the case of
mitochondria genomes, for instance, Figure 2 would suggest using
at least three different reference sequences. Whether the gain in
compression that can be expected for each subgroup, akin to the
gain achieved by going from the rCRS to the consensus sequence,
is worth the cost of having multiple reference sequences rather than
a single one, cannot be answered in generality and depends on the
details of a particular application, the number of genomes to be
stored coming from each group and so forth. For future work, the
same idea of multiple reference sequences can be extended beyond
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Table 8. Compression of the read addresses information from three HTS experiments (see text)

Encoding DataSet 1 DataSet 2 DataSet 3

Raw Sequence 133 366 560 353 182 128 8 869 613 600
Flat File 75 525 168 185 536 864 8 396 646 344
Elias Gamma absolute 358 402 (210.73) 79 281 140 (2.34) 1 373 892 116 (6.11)
Elias Gamma relative 185 542 (407.05) 27 741 238 (6.69) 340 764 564 (24.64)
Monotone Value (MOV) 169 664 (445.15) 39 528 754 (4.69) 834 672 652 (10.06)

The size in bits for the raw sequence data, the corresponding flat text file format for the corresponding addresses, and the compressed files for different compression algorithms. Elias
Gamma coding is applied both to the absolute and relative addresses. Compression factors with respect to the flat text file format are given in parentheses, with top compression
factors in bold. MOV is a coding algorithm specifically designed for increasing sequences of integers described in Baldi et al. (2007).

the storage of genomes within a given species, to the storage of
genomes from multiple species by using a phylogenetic hierarchy
of reference sequences.

Finally, the approach can be extended to human nuclear genomes
(see also, Christley et al., 2009) and to HTS from different
technologies and different kinds of experiments. For human SNP
variation, data and statistics are readily available (Goldstein and
Cavalleri, 2005; Hinds et al., 2005; The International HapMap
Consortium, 2007). A comprehensive list of human SNPs is
available from the dbSNP database maintained by NCBI. The current
release (version 129) contains about 15 million SNPs. This data
can readily be compressed using the techniques described here
and additional gains in compression can be achieved by storing
separately a fixed table recording the location of all the SNPs and
leveraging the skewed distribution of some of the SNP variants.
In preliminary experiments, we have achieved compression factors
of over 1000 on the raw HapMap sequence data. Although SNPs
account for most of genetic variation events between individuals,
a much larger fraction of the genome (in terms of the total
number of bases) is involved in larger structural variation events,
such as copy number variations (CNVs). While there have been
studies attempting to derive a preliminary assessment of large-scale
genomic complexity and variation (Feschotte and Pritham, 2007;
Tuzun et al., 2005), statistics on the frequencies and location of
these more complex structural variations in the human genome are
still at an earlier stage of development. For instance, comparative
analysis of the single diploid genome described in Levy et al. (2007),
‘revealed more than 4.1 million DNA variants, encompassing
12.3 Mb. These variants (of which 1 288 319 were novel) included
3 213 401 single nucleotide polymorphisms (SNPs), 53 823 block
substitutions (2206 bp), 292 102 heterozygous insertion/deletion
events (indels) (1571 bp), 559 473 homozygous indels (182 711 bp),
90 inversions, as well as numerous segmental duplications and copy
number variation regions. Non-SNP DNA variation accounts for
22% of all events identified in the donor, however they involve
74% of all variant bases. This suggests an important role for non-
SNP genetic alterations in defining the diploid genome structure’.
A better statistical understanding of the coding constraints posed
by these complex events, and how to encode them, should become
possible as more full human genome sequences become available
in the coming years (www.1000genomes.org).

Regarding HTS data, for illustration purposes, here we consider
the problem of storing the genomic addresses of the reads from three
HTS datasets associated with different HTS technologies. The first
dataset is obtained from the laboratory of Dr S. Sandmeyer at UCI

and comes from an experiment aimed at mapping retrotransposon
Ty3 insertion sites in the yeast genome. It consists of 833 541
sequence reads, all of length 19 bp. The second dataset comes from
a chromatin immunoprecipitation assay (ChIP-Seq) used to map the
in vivo binding site locations of the neuron-restrictive silencer factor
(NRSF) in humans (Johnson et al., 2007). It consists of 1 697 991
sequence reads, all of length 25 bp and mapped to the most recent
human genome sequence (hg18). The third dataset corresponds to
a full diploid human genome sequencing experiment for an Asian
individual (Wang et al., 2008). This is a very large dataset with
enough reads to provide 36-fold average coverage, and we utilize the
existing mapping of the reads provided by the YH database (Li et al.,
2009) to the human reference genome. For illustrative purposes, we
report only the results corresponding to the reads associated with
chromosome 22. For chromosome 22, there are 31 118 532 reads
that vary in length from 30 to 40 bp for a total of 1 108 701 700 bp of
sequence data. While complete details of these experiments will be
reported elsewhere, Table 8 shows the resulting compression factors
which are again in the range of 1–3 orders of magnitude, depending
on the statistical properties of the datasets. The same techniques
described here can readily be applied to storing also the length of the
reads, the content of the reads, where they differ from the reference
genome, their quality and so forth. Statistical properties of the reads
and the underlying HTS technologies, e.g. increasing error rates
towards the end of the read, can also be exploited to achieve efficient
compression. Thus, the data structures and compression algorithms
described here provide a framework for the management of HTS and
genomic data that can be flexibly applied in different environments.
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